공공정책 위키(Public Policy Wiki)에 오신 것을 환영합니다


공공정책 위키 시작하기

GMO 완전표시제: 두 판 사이의 차이

Public Policy Wiki
둘러보기로 이동 검색으로 이동
(새 문서: == GMO == === GMO란? === Genetically Modified Organism (GMO)는 유전 공학 기술을 사용하여 유전 물질이 바뀐 유기체이다. <ref>Genetically modified organism. (2024, May 29). Wikipedia. https://en.wikipedia.org/wiki/Genetically_modified_organism</ref> Vector를 통해 유기체의 genom에 새로운 유전자를 도입하거나 유기체가 가지고 있는 본래의 유전자를 knockout 시키는 방법 등으로 유전 물질을 변형시킬 수 있으며...)
 
편집 요약 없음
6번째 줄: 6번째 줄:
* 가장 최초의 유전자 변형 유기체는 Herbert Boyer와 Stanley Cohen이 1973년에 카나마이신이라는 항생제에 내성을 가지도록 유전자 변형한 bacteria이다.
* 가장 최초의 유전자 변형 유기체는 Herbert Boyer와 Stanley Cohen이 1973년에 카나마이신이라는 항생제에 내성을 가지도록 유전자 변형한 bacteria이다.
* 1974년에 Rudolf Jaenisch가 mouse를 이용하여 최초의 유전자 변형 동물을 생산하였다.
* 1974년에 Rudolf Jaenisch가 mouse를 이용하여 최초의 유전자 변형 동물을 생산하였다.
* 1983년에는 마침내 유전자 변형 식물 또한 생산되었다.
* 1983년에 유전자 변형 식물이 생산되었다.
* 1994년, 부패를 유도하는 효소를 억제하게 형질전환되어 잘 익은 상태로 단단함을 유지하며, 곰팡이 저항성도 지니도록 유전자 변형된 'Flaver Savr' 토마토가 최초로 상용화되었다.<ref>Flavr Savr. (2024, April 15). https://en.wikipedia.org/wiki/Flavr_Savr</ref>
* 1994년, 부패를 유도하는 효소를 억제하게 형질전환되어 잘 익은 상태로 단단함을 유지하며, 곰팡이 저항성도 지니도록 유전자 변형된 'Flaver Savr' 토마토가 최초로 상용화되었다.<ref>Flavr Savr. (2024, April 15). https://en.wikipedia.org/wiki/Flavr_Savr</ref>
* 2015년 growth hormone (GH)를 조작한 'AquAdvantage 연어'가 미국과 캐나다에서 최초로 식용으로 승인되었다.<ref>AquAdvantage salmon. (2024, February 9). https://en.wikipedia.org/wiki/AquAdvantage_salmon</ref>
* 2015년 growth hormone (GH)를 조작한 'AquAdvantage 연어'가 미국과 캐나다에서 최초로 식용으로 승인되었다.<ref>AquAdvantage salmon. (2024, February 9). https://en.wikipedia.org/wiki/AquAdvantage_salmon</ref>


=== 유전자 변형 작물로서의 GMO ===
=== GM 작물로서의 GMO ===
GMO는 통상적으로 유전자 변형 작물, 즉 GM 작물로 사람들에게 알려져 있다.
GMO는 통상적으로 유전자 변형 작물, 즉 GM 작물로 사람들에게 알려져 있다.  
[[파일:Agrobacterium을 통한 형질전환.png|섬네일|Figure 1. ''Agrobacterium''을 통한 형질전환]]
 
 
GM 작물이란 인공적으로 우리가 원하는 유용한 유전자가 작물의 유전체 내에 삽입됨에 따라 의도한 특성을 가지게 된 작물이다. 유전자 재조합된 GM 작물은 제초제나 병해충의 저항성을 가지고, 환경 스트레스에 잘 견디는 특성이 강화되거나 유전적으로 영양소 구성성분이 강화되며, 새로운 기능성이 첨가되어 기존의 특성을 넘어서는 등 여러 가지 이점을 지닌다. <ref>김용권. (2015). GM 작물의 개발현황 및 전망. ''한국국제농업개발학회지'', ''27''(4), 448-454.</ref> 이러한 GM 작물은 식용으로 사용될 수 있고, 비식용으로는 의약품 또는 바이오 연료 등으로 사용될 수 있다.
 
GM 작물을 생산하는 가장 일반화된 방식은 ''Agrobacterium''의 Ti plasmid에 항생제 내성, 제초제 내성 등의 형질을 나타내는 target gene을 통해 형질 전환 시키는 것이며, 이 외에도 gene gun 방식, 전기 천공법, 미세주입 등으로 GM 작물을 쉽게 만들 수 있다.<ref name=":0">Genetically modified crops. (2024, June 11). https://en.wikipedia.org/wiki/Genetically_modified_crops</ref>


=== GMO의 이점 ===
=== GMO의 이점 ===
GMO의 이점으로는 크게 생육의 용이, 영양 성분의 강화, 개발도상국에서의 긍정적인 영향을 들 수 있다.
==== 생육의 용이 ====
GMO는 병충해 저항성, 식물 병 저항성, Roundup-ready와 같은 제초제에 대한 내성, 고온 등의 스트레스 저항 등을 가져 작물을 재배할 때에 생육이 용이하다. 또, 과실의 경우 유전자 재조합을 통해 색 발현 조절이 가능해져서 과실의 색을 마음대로 결정할 수도 있으며, 과실이 물러지지 않게 조작할 수도 있다. <ref>Adrian Slater, Nigel W. Scott, and(&) Mark R. Fowler, 식물생명공학, 권석윤 외 역, 서울: 월드사이언스, 2014.</ref> 2014년 메타 분석에서는 GM 기술 채택으로 화학 살충제 사용이 37% 감소하고, 작물 수확량이 22% 증가하고, 농민 이익이 68% 증가했다고 결론지었다. <ref name=":0" />
==== 영양 성분의 강화 ====
GMO는 필요한 영양 성분을 강화할 수 있어서 사람의 영양소 섭취 정도를 개선하여 암, 당뇨병, 심혈관 질환, 고혈압 등과 같은 질환을 치료하고 예방하는 데에 도움을 줄 수 있다. 또한 탄수화물, 단백질, 지질 등 다량영양소와 비타민, 미네랄 등 미량영양소의 섭취를 개선하면 비타민 A 부족으로 인한 실명을 줄일 수도 있다. 특히 향상된 영양소 중에서도 미네랄 이용 가능성의 증가는 면역 체계를 개선하고 발육 부진을 줄이는 데 기여한다.<ref name=":1">Smyth S. J, The human health benefits from GM crops. ''Plant biotechnology journal'' Vol.18, 2020.</ref>
==== 개발도상국에서의 긍정적인 영향 ====
기계를 사용해 농약을 살포하는 선진국과는 달리, 사람의 손으로 백 팩 분무기를 사용하여 살충 작업을 해야 하는 개발도상국에서는 화학 잔류물이 인체에 흡수되어 살충제 중독이라는 질병이 발생하기도 하고, 농약 살포가 제대로 이루어지지 않아서 작물의 생산성이 떨어진다. 또, 인간과 동물에게 유독하고 발암의 위험성이 큰 마이코톡신과 신경관 결손 비율을 높이는 푸모니신을 함유한 옥수수 등이 가정에서 소비되기도 한다. 하지만, 유전자 재조합을 통한 BT 내성 작물의 보급으로 살충제 노출 수준을 감소시켜서 살충제 중독 사례를 큰 폭으로 감소시켰으며, 유전자 재조합 기술로 더 낮은 농도의 마이코톡신(29%), 푸모니신(31%), 트리코테센스(37%)를 함유한 옥수수를 생산했다.<ref name=":1" />
[[파일:황금쌀.png|섬네일|Figure 2. 황금쌀]]
쌀을 주식으로 개발도상국에서는 수많은 어린이들이 비타민 A 부족에 시달리고, 이들 중 매년 약 50만 명이 실명이 되고 있다. 비타민 A는 면역기능 전반에도 관련이 있어 비타민 A 결핍은 설사, 호흡기 질환, 홍역 등의 질병을 유발하기도 한다. 이러한 문제들은 ‘황금쌀’을 통해 해결되었다. 황금쌀은 배유에서 비타민 A를 만드는 베타카로틴이 합성될 수 있도록 유전자를 재조합한 GM 작물로 황색 또는 주황색을 띠어 황금쌀이라고 불린다. 또, 황금쌀은 추출, 가공, 유통 등 다른 조건을 요구하지 않고 비타민 A 부족을 비용이 들지 않는 지속 가능한 방법으로 해결할 수 있고, 환경적 측면에서도 농업적 생물 다양성을 감소시키지 않고 자연에서도 마찬가지로 생물 다양성을 감소시키지 않으며 추후의 환경에 대한 부작용이 없다는 장점이 있다.<ref name=":1" />


== GMO 안전성 ==
== GMO 안전성 ==
22번째 줄: 42번째 줄:


==== 식품의약안전처의 입장 ====
==== 식품의약안전처의 입장 ====
식품의약안전처는 ‘GMO가 DNA를 변형한 것이니 섭취하면 우리 몸에서도 변형이 일어날 것이라는 공포에 사로잡히기 쉬우나 대부분의 식품 유전자는 섭취 후 소화 효소와 위액에 의해 아미노산으로 분해돼 완전히 없어지기 때문에 GMO를 섭취한다고 사람의 유전자가 변형되지 않는다.’라고 설명한다.


==== 시민 사회의 입장 ====
==== 시민 사회의 입장 ====
시민 사회는 ‘현재 과학기술 수준에서는 GMO가 안전하다고 판단할 수 없다는 것이 과학계 전문가들의 입장’이라고 반박하면서 ‘GMO는 농약을 아무리 써도 살아남는 변이이며 변형된 유전자 자체가 위해성이 있는지 아직은 알 수 없지만, 재배 과정에서 농약을 많이 써서 건강에 안 좋다는 것은 누구나 아는 사실이다.’라고 주장한다.


=== GMO에 대한 갈등 재점화 ===
=== GMO에 대한 갈등 재점화 ===
지난 수년 간 승인되지 않은 GMO 작물인 '주키니 호박'이 국내에서 생산·유통·소비되는 사실이 밝혀지자 GMO에 대한 정부와 시민 사회 간의 갈등이 재점화되기 시작했다.<ref>정화령, 유명무실한 GMO 표시제 개선하고, 반복되는 GMO 사고 막아야, LIFE IN, 2023. 5. 25. https://www.lifein.news/news/articleView.html?idxno=15612</ref>


== GMO 완전표시제 ==
== GMO 완전표시제 ==
42번째 줄: 65번째 줄:


=== 식품의약안전처의 역할 ===
=== 식품의약안전처의 역할 ===
식품의약안전처는 국민의 먹거리 안전을 책임지는 조직으로서 책임과 의무를 다해야 한다.
* GMO에 대한 국민의 알 권리를 충족시키는 일을 게을리해서는 안 된다.
* 세계 곳곳에서 이루어지고 있는 GMO 식품에 대한 여러 실험 결과에 주목하여 긍정과 부정적 결론이 도출된 이유를 철저히 분석하여 보다 올바른 제도적 장치를 마련할 수 있어야 한다.
* GMO 식품 표시제가 어떻게 구성되어 있는지 소비자가 잘 알 수 있도록 표시하여 국민 스스로가 현명한 소비자로서 올바른 가치 판단을 할 수 있도록 하여야 한다.


=== 시민 사회에게 요구되는 점 ===
=== 시민 사회에게 요구되는 점 ===
시민 사회는 고도의 생명공학 기술로 만들어진 GMO를 마냥 안 좋게만 보지 않아야 한다.
* GMO에 사용되는 ‘변형’이나 ‘조작’이라는 용어에 혐오감을 느끼지 않아야 한다.
* GMO가 인체나 환경에 위해를 끼칠 가능성에 대해 막연하게 걱정하지 않아야 한다.
* 무작정 정부에게 모든 정보를 제공하라고만 할 것이 아니라, GMO가 훌륭한 대체 식량이 될 수 있도록 하기 위해 이러한 인식을 전환해야 한다.

2024년 6월 19일 (수) 03:11 판

GMO

GMO란?

Genetically Modified Organism (GMO)는 유전 공학 기술을 사용하여 유전 물질이 바뀐 유기체이다. [1] Vector를 통해 유기체의 genom에 새로운 유전자를 도입하거나 유기체가 가지고 있는 본래의 유전자를 knockout 시키는 방법 등으로 유전 물질을 변형시킬 수 있으며, 가장 일반적으로는 교배를 통한 재조합으로 자연적으로 발생하지 않는 변형된 유기체를 생산할 수 있다. 이러한 유전 공학적 기법으로 bacteria부터 동물 군, 식물 군까지 다양한 유기체들의 유전자 변형 연구가 이루어져 왔으며, 생물로 분류되지 않는 바이러스의 유전 물질 또한 변형되어져 왔다. 이는 산업적으로 큰 의의를 가질 뿐만 아니라 생명공학적 연구를 발전시키는 기반이 되었다.

  • 가장 최초의 유전자 변형 유기체는 Herbert Boyer와 Stanley Cohen이 1973년에 카나마이신이라는 항생제에 내성을 가지도록 유전자 변형한 bacteria이다.
  • 1974년에 Rudolf Jaenisch가 mouse를 이용하여 최초의 유전자 변형 동물을 생산하였다.
  • 1983년에 유전자 변형 식물이 생산되었다.
  • 1994년, 부패를 유도하는 효소를 억제하게 형질전환되어 잘 익은 상태로 단단함을 유지하며, 곰팡이 저항성도 지니도록 유전자 변형된 'Flaver Savr' 토마토가 최초로 상용화되었다.[2]
  • 2015년 growth hormone (GH)를 조작한 'AquAdvantage 연어'가 미국과 캐나다에서 최초로 식용으로 승인되었다.[3]

GM 작물로서의 GMO

GMO는 통상적으로 유전자 변형 작물, 즉 GM 작물로 사람들에게 알려져 있다.

Figure 1. Agrobacterium을 통한 형질전환


GM 작물이란 인공적으로 우리가 원하는 유용한 유전자가 작물의 유전체 내에 삽입됨에 따라 의도한 특성을 가지게 된 작물이다. 유전자 재조합된 GM 작물은 제초제나 병해충의 저항성을 가지고, 환경 스트레스에 잘 견디는 특성이 강화되거나 유전적으로 영양소 구성성분이 강화되며, 새로운 기능성이 첨가되어 기존의 특성을 넘어서는 등 여러 가지 이점을 지닌다. [4] 이러한 GM 작물은 식용으로 사용될 수 있고, 비식용으로는 의약품 또는 바이오 연료 등으로 사용될 수 있다.

GM 작물을 생산하는 가장 일반화된 방식은 Agrobacterium의 Ti plasmid에 항생제 내성, 제초제 내성 등의 형질을 나타내는 target gene을 통해 형질 전환 시키는 것이며, 이 외에도 gene gun 방식, 전기 천공법, 미세주입 등으로 GM 작물을 쉽게 만들 수 있다.[5]

GMO의 이점

GMO의 이점으로는 크게 생육의 용이, 영양 성분의 강화, 개발도상국에서의 긍정적인 영향을 들 수 있다.

생육의 용이

GMO는 병충해 저항성, 식물 병 저항성, Roundup-ready와 같은 제초제에 대한 내성, 고온 등의 스트레스 저항 등을 가져 작물을 재배할 때에 생육이 용이하다. 또, 과실의 경우 유전자 재조합을 통해 색 발현 조절이 가능해져서 과실의 색을 마음대로 결정할 수도 있으며, 과실이 물러지지 않게 조작할 수도 있다. [6] 2014년 메타 분석에서는 GM 기술 채택으로 화학 살충제 사용이 37% 감소하고, 작물 수확량이 22% 증가하고, 농민 이익이 68% 증가했다고 결론지었다. [5]

영양 성분의 강화

GMO는 필요한 영양 성분을 강화할 수 있어서 사람의 영양소 섭취 정도를 개선하여 암, 당뇨병, 심혈관 질환, 고혈압 등과 같은 질환을 치료하고 예방하는 데에 도움을 줄 수 있다. 또한 탄수화물, 단백질, 지질 등 다량영양소와 비타민, 미네랄 등 미량영양소의 섭취를 개선하면 비타민 A 부족으로 인한 실명을 줄일 수도 있다. 특히 향상된 영양소 중에서도 미네랄 이용 가능성의 증가는 면역 체계를 개선하고 발육 부진을 줄이는 데 기여한다.[7]

개발도상국에서의 긍정적인 영향

기계를 사용해 농약을 살포하는 선진국과는 달리, 사람의 손으로 백 팩 분무기를 사용하여 살충 작업을 해야 하는 개발도상국에서는 화학 잔류물이 인체에 흡수되어 살충제 중독이라는 질병이 발생하기도 하고, 농약 살포가 제대로 이루어지지 않아서 작물의 생산성이 떨어진다. 또, 인간과 동물에게 유독하고 발암의 위험성이 큰 마이코톡신과 신경관 결손 비율을 높이는 푸모니신을 함유한 옥수수 등이 가정에서 소비되기도 한다. 하지만, 유전자 재조합을 통한 BT 내성 작물의 보급으로 살충제 노출 수준을 감소시켜서 살충제 중독 사례를 큰 폭으로 감소시켰으며, 유전자 재조합 기술로 더 낮은 농도의 마이코톡신(29%), 푸모니신(31%), 트리코테센스(37%)를 함유한 옥수수를 생산했다.[7]

Figure 2. 황금쌀


쌀을 주식으로 개발도상국에서는 수많은 어린이들이 비타민 A 부족에 시달리고, 이들 중 매년 약 50만 명이 실명이 되고 있다. 비타민 A는 면역기능 전반에도 관련이 있어 비타민 A 결핍은 설사, 호흡기 질환, 홍역 등의 질병을 유발하기도 한다. 이러한 문제들은 ‘황금쌀’을 통해 해결되었다. 황금쌀은 배유에서 비타민 A를 만드는 베타카로틴이 합성될 수 있도록 유전자를 재조합한 GM 작물로 황색 또는 주황색을 띠어 황금쌀이라고 불린다. 또, 황금쌀은 추출, 가공, 유통 등 다른 조건을 요구하지 않고 비타민 A 부족을 비용이 들지 않는 지속 가능한 방법으로 해결할 수 있고, 환경적 측면에서도 농업적 생물 다양성을 감소시키지 않고 자연에서도 마찬가지로 생물 다양성을 감소시키지 않으며 추후의 환경에 대한 부작용이 없다는 장점이 있다.[7]

GMO 안전성

GMO 안전성

GMO를 둘러싼 입장

식품의약안전처의 입장

식품의약안전처는 ‘GMO가 DNA를 변형한 것이니 섭취하면 우리 몸에서도 변형이 일어날 것이라는 공포에 사로잡히기 쉬우나 대부분의 식품 유전자는 섭취 후 소화 효소와 위액에 의해 아미노산으로 분해돼 완전히 없어지기 때문에 GMO를 섭취한다고 사람의 유전자가 변형되지 않는다.’라고 설명한다.

시민 사회의 입장

시민 사회는 ‘현재 과학기술 수준에서는 GMO가 안전하다고 판단할 수 없다는 것이 과학계 전문가들의 입장’이라고 반박하면서 ‘GMO는 농약을 아무리 써도 살아남는 변이이며 변형된 유전자 자체가 위해성이 있는지 아직은 알 수 없지만, 재배 과정에서 농약을 많이 써서 건강에 안 좋다는 것은 누구나 아는 사실이다.’라고 주장한다.

GMO에 대한 갈등 재점화

지난 수년 간 승인되지 않은 GMO 작물인 '주키니 호박'이 국내에서 생산·유통·소비되는 사실이 밝혀지자 GMO에 대한 정부와 시민 사회 간의 갈등이 재점화되기 시작했다.[8]

GMO 완전표시제

GMO 표시제란?

GMO 완전표시제란?

GMO 완전표시제를 둘러싼 입장

식품의약안전처의 입장

시민 사회의 입장

갈등 해결 방안

식품의약안전처의 역할

식품의약안전처는 국민의 먹거리 안전을 책임지는 조직으로서 책임과 의무를 다해야 한다.

  • GMO에 대한 국민의 알 권리를 충족시키는 일을 게을리해서는 안 된다.
  • 세계 곳곳에서 이루어지고 있는 GMO 식품에 대한 여러 실험 결과에 주목하여 긍정과 부정적 결론이 도출된 이유를 철저히 분석하여 보다 올바른 제도적 장치를 마련할 수 있어야 한다.
  • GMO 식품 표시제가 어떻게 구성되어 있는지 소비자가 잘 알 수 있도록 표시하여 국민 스스로가 현명한 소비자로서 올바른 가치 판단을 할 수 있도록 하여야 한다.

시민 사회에게 요구되는 점

시민 사회는 고도의 생명공학 기술로 만들어진 GMO를 마냥 안 좋게만 보지 않아야 한다.

  • GMO에 사용되는 ‘변형’이나 ‘조작’이라는 용어에 혐오감을 느끼지 않아야 한다.
  • GMO가 인체나 환경에 위해를 끼칠 가능성에 대해 막연하게 걱정하지 않아야 한다.
  • 무작정 정부에게 모든 정보를 제공하라고만 할 것이 아니라, GMO가 훌륭한 대체 식량이 될 수 있도록 하기 위해 이러한 인식을 전환해야 한다.
  1. Genetically modified organism. (2024, May 29). Wikipedia. https://en.wikipedia.org/wiki/Genetically_modified_organism
  2. Flavr Savr. (2024, April 15). https://en.wikipedia.org/wiki/Flavr_Savr
  3. AquAdvantage salmon. (2024, February 9). https://en.wikipedia.org/wiki/AquAdvantage_salmon
  4. 김용권. (2015). GM 작물의 개발현황 및 전망. 한국국제농업개발학회지, 27(4), 448-454.
  5. 5.0 5.1 Genetically modified crops. (2024, June 11). https://en.wikipedia.org/wiki/Genetically_modified_crops
  6. Adrian Slater, Nigel W. Scott, and(&) Mark R. Fowler, 식물생명공학, 권석윤 외 역, 서울: 월드사이언스, 2014.
  7. 7.0 7.1 7.2 Smyth S. J, The human health benefits from GM crops. Plant biotechnology journal Vol.18, 2020.
  8. 정화령, 유명무실한 GMO 표시제 개선하고, 반복되는 GMO 사고 막아야, LIFE IN, 2023. 5. 25. https://www.lifein.news/news/articleView.html?idxno=15612